References

References

  1. Bailey, J., and D. Ollis. 1986. Biochemical engineering fundamentals. McGraw-Hill Book Co., New York, N.Y.
  2. Brown, S. M., M. L. Howell, M. L. Vasil, A. J. Anderson, and D. J. Hassett. 1995. Cloning and characterization of the katB gene of Pseudomonas aeruginosa encoding a hydrogen peroxide-inducible catalase: purification of KatB, cellular localization, and demonstration that it is essential for optimal resistance to hydrogen peroxide. J. Bacteriol. 177:6536-6544. [Abstract]
  3. Costerton, J. W., Z. Lewandowski, D. de Beer, D. Caldwell, D. Korber, and G. James. 1994. Biofilms, the customized microniche. J. Bacteriol. 176:2137-2142. [Medline]
  4. Cussler, E. L. 1984. Diffusion - mass transfer in fluid systems. Cambridge University Press, Cambridge, United Kingdom.
  5. Davies, D. G., M. R. Parsek, J. P. Pearson, B. H. Iglewski, J. W. Costerton, and E. P. Greenberg. 1998. The involvement of cell-to-cell signals in the development of a bacterial biofilm. Science 280:295-298. [Abstract/Free Full Text]
  6. de Beer, D., R. Srinivasan, and P. S. Stewart. 1994. Direct measurement of chlorine penetration into biofilms during disinfection. Appl. Environ. Microbiol. 60:4339-4344.[Abstract]
  7. de Beer, D., P. Stoodley, and Z. Lewandowski. 1997. Measurements of local diffusion coefficients in biofilms by microinjection and confocal microscopy. Biotechnol. Bioeng. 53:151-158. [CrossRef]
  8. de Beer, D., P. Stoodley, F. Roe, and Z. Lewandowski. 1994. Effects of biofilm structure on oxygen distribution and mass transport. Biotechnol. Bioeng. 43:1131-1138.
  9. Dockery, J. D., and J. P. Keener. 2001. A mathematical model for quorum sensing in Pseudomonas aeruginosa. Bull. Math. Biol. 63:95-116.[CrossRef] [Medline]
  10. Han, P., and D. M. Bartels. 1996. Temperature dependence of oxygen diffusion in H2O and D2O. J. Phys. Chem. 100:5597-5602. [CrossRef]
  11. Harmsen, H. J. M., H. M. P. Kengen, A. D. L. Akkermans, A. J. M. Stams, and W. M. de Vos. 1996. Detection and localization of syntrophic propionate-oxidizing bacteria in granular sludge by in situ hybridization using 16S rRNA-based oligonucleotide probes. Appl. Environ. Microbiol. 62:1656-1663. [Abstract]
  12. Hermanowicz, S. W. 2001. A simple 2D biofilm model yields a variety of morphological features. Math. Biosci. 169:1-14. [CrossRef] [Medline]
  13. Horvath, A. L. 1985. Handbook of aqueous electrolyte solutions: physical properties, estimation and correlation methods. John Wiley & Sons, Inc., New York, N.Y.
  14. Jackson, D. W., K. Suzuki, L. Oakford, J. W. Simecka, M. E. Hart, and T. Romeo. 2002. Biofilm formation and dispersal under the influence of the global regulator CsrA of Escherichia coli. J. Bacteriol. 184:290-301. [Abstract/Free Full Text]
  15. Kreft, J.-U., C. Picioreanu, J. W. T. Wimpenny, and M. C. M. van Loosdrecht. 2001. Individual-based modeling of biofilms. Microbiology 147:2897-2912. [Abstract/Free Full Text]
  16. Longsworth, L. G. 1955. Diffusion in liquids and the Stokes-Einstein relation, p. 225-247. In T. Shedlovsky (ed.), Electrochemistry in biology and medicine. John Wiley & Sons, Inc., New York, N.Y.
  17. MacLeod, F. A., S. R. Guiot, and J. W. Costerton. 1990. Layered structure of bacterial aggregates produced in an upflow anaerobic sludge bed and filter reactor. Appl. Environ. Microbiol. 56:1598-1607. [Medline]
  18. Mason, C. M., and J. B. Culvern. 1949. Electrical conductivity of orthophosphoric acid and of sodium and potassium dihydrogen phosphates at 25°C. J. Am. Chem. Soc. 71:2387-2393.
  19. Okabe, S., T. Itoh, H. Satoh, and Y. Watanabe. 1999. Analyses of spatial distributions of sulfate-reducing bacteria and their activity in aerobic wastewater biofilms. Appl. Environ. Microbiol. 65:5107-5116. [Abstract/Free Full Text]
  20. Okabe, S., H. Satoh, and Y. Watanabe. 1999. In situ analysis of nitrifying biofilms as determined by in situ hybridization and the use of microelectrodes. Appl. Environ. Microbiol. 65:3182-3191. [Abstract/Free Full Text]
  21. O'Toole, G. A., K. A. Givvs, P. W. Hager, P. V. Phibbs, Jr., and R. Kolter. 2000. The global carbon metabolism regulator Crc is a component of a signal transduction pathway required for biofilm development by Pseudomonas aeruginosa. J. Bacteriol. 182:425-431. [Abstract/Free Full Text]
  22. Perry, R. H., and C. H. Chilton. 1973. Chemical engineers' handbook, 5th ed. McGraw-Hill Book Co., New York, N.Y.
  23. Picioreanu, C., M. C. M. van Loosdrecht, and J. J. Heijnen. 1998. Mathematical modeling of biofilm structure with a hybrid differential-discrete cellular automaton approach. Biotechnol. Bioeng. 58:101-116. [CrossRef] [Medline]
  24. Ramsing, N. B., M. Kuhl, and B. B. Jorgensen. 1993. Distribution of sulfate-reducing bacteria, O2, and H2S in photosynthetic biofilms determined by oligonucleotide probes and microelectrodes. Appl. Environ. Microbiol. 59:3840-3849. [Abstract]
  25. Redfield, R. J. 2002. Is quorum sensing a side effect of diffusion sensing? Trends Microbiol. 10:365-370. [CrossRef] [Medline]
  26. Robinson, R. A., and R. H. Stokes. 1959. Electrolyte solutions. Academic Press, Ltd., London, England.
  27. Santegoeds, C. M., T. G. Ferdelman, G. Muyzer, and D. de Beer. 1998. Structural and functional dynamics of sulfate-reducing populations in bacterial biofilms. Appl. Environ. Microbiol. 64:3731-3739. [Abstract/Free Full Text]
  28. Sauer, K., A. K. Camper, G. D. Ehrlich, J. W. Costerton, and D. G. Davies. 2002. Pseudomonas aeruginosa displays multiple phenotypes during development as a biofilm. J. Bacteriol. 184:1154.
  29. Schramm, A., L. H. Larsen, N. P. Revsbech, N. B. Ramsing, R. Amann, and K.-H. Schleifer. 1996. Structure and function of a nitrifying biofilm as determined by in situ hybidization and the use of microelectrodes. Appl. Environ. Microbiol. 62:4641-4647. [Abstract]
  30. Sivakanesan, R., and E. A. Dawes. 2000. Anaerobic glucose and serine metabolism in Staphylococcus epidermidis. J. Gen. Microbiol. 118:143-157.
  31. Sternberg, C., B. B. Christensen, T. Johansen, A. T. Nielsen, J. B. Andersen, M. Givskov, and S. Molin. 1999. Distribution of bacterial growth activity in flow-chamber biofilms. Appl. Environ. Microbiol. 65:4108-4117. [Abstract/Free Full Text]
  32. Stewart, P. S. 1996. Theoretical aspects of antibiotic diffusion into microbial biofilms. Antimicrob. Agents Chemother. 40:2517-2522. [Abstract]
  33. Stewart, P. S. 1998. A review of experimental measurements of effective diffusive permeabilities and effective diffusion coefficients in biofilms. Biotechnol. Bioeng. 59:261-272. [CrossRef] [Medline]
  34. Stewart, P. S., G. A. McFeters, and C.-T. Huang. 2000. Biofilm control by antimicrobial agents, p. 373-405. In J. D. Bryers (ed.), Biofilms, 2nd ed. John Wiley & Sons, Inc., New York, N.Y.
  35. Stewart, P. S., Rayner, J., Roe, F., and W. M. Rees. 2001. Biofilm penetration and disinfection efficacy of alkaline hypochlorite and chlorosulfamates. J. Appl. Microbiol. 91:525-532. [CrossRef] [Medline]
  36. Stoodley, P., D. de Beer, and Z. Lewandowski. 1994. Liquid flow in biofilm systems. Appl. Environ. Microbiol. 60:2711-2716. [Abstract]
  37. Walters, M. C., F. Roe, A. Bugnicourt, M. J. Franklin, and P. S. Stewart. Contributions of antibiotic penetration, oxygen limitation, and low metabolic activity to the tolerance of Pseudomonas aeruginosa biofilms to ciprofloxacin and tobramycin. Antimicrob. Agents Chemother., in press.
  38. Wentland, E. J., P. S. Stewart, C.-T. Huang, and G. A. McFeters. 1996. Spatial variations in growth rate within Klebsiella pneumoniae colonies and biofilm. Biotechnol. Prog. 12:316-321. [CrossRef] [Medline]
  39. Whiteley, M., M. G. Bangera, R. E. Bumgarner, M. R. Parsek, G. M. Teitzel, S. Lory, and E. P. Greenberg. 2001. Gene expression in Pseudomonas aeruginosa biofilms. Nature 413:860-864. [CrossRef] [Medline]
  40. Wood, B. D., M. Quintard, and S. Whitaker. 2002. Calculation of effective diffusivities for biofilms and tissues. Biotechnol. Bioeng. 77:495-516. [CrossRef] [Medline]
  41. Xu, K. D., M. J. Franklin, C.-H. Park, G. A. McFeters, and P. S. Stewart. 2001. Gene expression and protein levels of the stationary phase sigma factor, RpoS, in continuously fed Pseudomonas aeruginosa biofilms. FEMS Microbiol. Lett. 199:67-71. [CrossRef] [Medline]
  42. Xu, K. D., P. S. Stewart, F. Xia, C.-T. Huang, and G. A. McFeters. 1998. Spatial physiological heterogeneity in Pseudomonas aeruginosa biofilm is determined by oxygen availability. Appl. Environ. Microbiol. 64:4035-4039. [Abstract/Free Full Text]
  43. Stewart, P.S. 2003. Diffusion in biofilms. J. Bacteriol. 185(5): 1485-1491.