
Machine/Code

For the final part of the CS450 project, you are to complete a fully functional Pascal compiler.

Since it would be impractical to have you generate assembly code for a real machine (with all the

intricacies of the target machine), we have created a virtual machine that has been designed

specifically for a Pascal compiler. The Machine (and is associated assembly language Code)

greatly simplifies the task of code generation while still requiring you to handle many of the

problems faced by other compiler writers.

At this point in time, you should have written a scanner and parser for Pascal, should be working

on the symbol table and should be thinking about semantic processing and code generation. The

following information about the Machine and Code is provided to assist you in your design and

implementation of the remaining parts of the Pascal compiler project:

Machine Specification:

The Machine is a virtual machine (simulated by a program) with the following hardware

characteristics:

 Separate instruction space (for assembly code) and RAM (for data storage/retrieval)

 10 general purpose registers (D0 - D9)

 Special stack pointer register (SP)

The Machine is a stack-based machine; all memory is allocated/deallocated on the data stack

residing in RAM:

 The data stack supports types: Integer, Float/Fixed, Strings.

 All data types have the same size of 1.

 The data stack grows upwards (starts at 0, pushes increment the SP, pops decrement the SP)

Supported Data Types

Integer:

As defined in the Pascal tokens document. Size: 1.

Float/Fixed:

Numbers represented as floating point or fixed point are supported and have a size of 1.

Specifically, it will accept all floats/fixed that scanf(“%f”) will from the C programming language.

 Legal Examples: 1.23, -1.3, -8.4e10, 3.0e-4, -4.21412e+2

 Illegal examples: 4e10, 4.e12

String:

String literals supported and are of size 1. They are defined on a single line directly followed by a

new line. Supports the following escape sequences:

 \n => New Line

 \r => Carriage Return

 \t => Horizontal Tab

 \v => Vertical Tab

 \\ => Backslash

 No other escape sequences are supported and none are needed for standard characters(except

backslash).

Code Specifications:

Code (assembly language) is based on QUADRUPLES. Each quadruple consists of an opcode and

up to three operands.

Opcodes:

At present there are 70 valid opcodes (instructions) in the Code assembly language...all are

detailed on the uCode Quick Reference page at the end of this document.

Operands Address Modes:

MODE FORM SAMPLE DESCRIPTION

IMMEDIATE #d #4 Integer literal value

IMMEDIATE FLOAT #f #-1.2 Float literal value

IMMEDIATE STRING #”s” #”abc\n b”e” String literal value defined on a single line.

REGISTER Dn D6 Contents of register n

INDEXED m(Dn) 5(D3) Address = Dn + m

INDIRECT @m(Dn) @7(D1) Address = Contents of (Dn + m)

STACK REGISTER SP SP Stack pointer

STACK INDEXED m(SP) 6(SP) Address = SP + m

STACK INDIRECT @m(SP) @2(SP) Address = Contents of (SP + m)

Labels:

Labels are specified with either Ln: (defining a label) or Ln (using a label).

Code Quick Reference Page

INSTRUCTION DESCRIPTION

HLT Terminate program execution

RD dst Read an integer value from the keyboard into dst

RDF dst Read a float value from the keyboard into dst

RDS dst Read a string value from the keyboard into dst. Quotations not needed.

WRT src Write a value in src to the screen

WRTS Performs: POP A WRT A

WRTLN src Write a value in src with a new line appended to the screen.

WRTLNS src Performs: POP A WRTLN A

MOV src dst Performs: dst <- src

NEG src dst Performs: dst <- -src (Integer)

ADD src1 src2 dst Performs: dst <- src1 + src2 (Integer)

SUB src1 src2 dst Performs: dst <- src1 - src2 (Integer)

MUL src1 src2 dst Performs: dst <- src1 * src2 (Integer)

DIV src1 src2 dst Performs: dst <- src1 / src2 (Integer)

MOD src1 src2 dst Performs: dst <- src1 % src2 (Integer)

NEGF src dst Performs: dst <- -src (Float or Fixed)

ADDF src1 src2 dst Performs: dst <- src1 + src2 (Float or Fixed)

SUBF src1 src2 dst Performs: dst <- src1 - src2 (Float or Fixed)

MULF src1 src2 dst Performs: dst <- src1 * src2 (Float or Fixed)

DIVF src1 src2 dst Performs: dst <- src1 / src2 (Float or Fixed)

PUSH src Push src onto the data stack

POP dst Pop the stack top into dst

NEGS Performs: POP A PUSH –A (Integer)

ADDS Performs: POP A POP B PUSH B + A (Integer)

SUBS Performs: POP A POP B PUSH B – A (Integer)

MULS Performs: POP A POP B PUSH B * A (Integer)

DIVS Performs: POP A POP B PUSH B / A (Integer)

MODS Performs: POP A POP B PUSH B % A (Integer)

NEGSF Performs: POP A PUSH –A (Float or Fixed)

ADDSF Performs: POP A POP B PUSH B + A (Float or Fixed)

SUBSF Performs: POP A POP B PUSH B – A (Float or Fixed)

MULSF Performs: POP A POP B PUSH B * A (Float or Fixed)

DIVSF Performs: POP A POP B PUSH B / A (Float or Fixed)

CASTSI Performs: POP A PUSH (float)A

CASTSF Performs: POP A PUSH (int)A

Ln: Drop a label at the current line

ANDS Performs POP A POP B PUSH B and A

ORS Performs POP A POP B PUSH B or A

NOTS Performs POP A PUSH not A

CMPEQS Performs POP A POP B PUSH B = A (Integer)

CMPGES Performs POP A POP B PUSH B >= A (Integer)

CMPGTS Performs POP A POP B PUSH B > A (Integer)

CMPLES Performs POP A POP B PUSH B <= A (Integer)

CMPLTS Performs POP A POP B PUSH B < A (Integer)

CMPNES Performs POP A POP B PUSH B <> A (Integer)

CMPEQSF Performs POP A POP B PUSH B = A (Float or Fixed)

CMPGESF Performs POP A POP B PUSH B >= A (Float or Fixed)

CMPGTSF Performs POP A POP B PUSH B > A (Float or Fixed)

CMPLESF Performs POP A POP B PUSH B <= A (Float or Fixed)

CMPLTSF Performs POP A POP B PUSH B < A (Float or Fixed)

CMPNESF Performs POP A POP B PUSH B <> A (Float or Fixed)

BRTS Ln Performs POP A BEQ A #1 Ln

BRFS Ln Performs POP A BEQ A #0 Ln

BR Ln Branch to label n

BEQ src1 src2 Ln Branch to label n if src1 = src2 (Integer)

BGE src1 src2 Ln Branch to label n if src1 >= src2 (Integer)

BGT src1 src2 Ln Branch to label n if src1 > src2 (Integer)

BLE src1 src2 Ln Branch to label n if src1 <= src2 (Integer)

BLT src1 src2 Ln Branch to label n if src1 < src2 (Integer)

BNE src1 src2 Ln Branch to label n if src1 <> src2 (Integer)

BEQF src1 src2 Ln Branch to label n if src1 = src2 (Float or Fixed)

BGEF src1 src2 Ln Branch to label n if src1 >= src2 (Float or Fixed)

BGTF src1 src2 Ln Branch to label n if src1 > src2 (Float or Fixed)

BLEF src1 src2 Ln Branch to label n if src1 <= src2 (Float or Fixed)

BLTF src1 src2 Ln Branch to label n if src1 < src2 (Float or Fixed)

BNEF src1 src2 Ln Branch to label n if src1 <> src2 (Float or Fixed)

CALL Ln Performs: PUSH PC BR Ln

RET Performs: POP PC

PRTS Prints out stack addresses and values – Doesn’t affect state of machine.

PRTR Prints out registers – Doesn’t affect state of machine.

